Home / What You Must Know About Robotic Welding: Industrial Safety Standards

What You Must Know About Robotic Welding: Industrial Safety Standards

Eric Esson of Frommelt Safety Products discusses the revised RIA 15.06 Industrial Robot Standard that is coming as only part of the shifting U.S. industrial safety standards that shops must monitor to remain compliant, maintain best practices – and stay competitive. Is your shop at risk?

Posted: March 21, 2013

EN ISO 13849-1, when broken down to the basics, provides a clearly defined set of rules to follow when designing the safety system as applied to industrial machine control systems. Officially defined as “safety of machinery, safety-related parts of control systems, general principles for design,” this regulatory shift was made necessary by advances in technology for safety control systems and methodology.

The ISO 13849-1 standard is more quantitative than EN 954-1. It applies common sense that forces facility managers to validate their safety systems, whereas EN 954-1 was conceptual and only required facilities to apply safety devices (controls) properly specifying non-programmable, out-of-date technology.

Let’s face it, our increasingly complex manufacturing processes require more complex systems to monitor their safe operation and keep machine operators safe. Automated processes, robotics and even time-tested processes all require considerable attention to assure those processes can proceed both efficiently and safely. EN ISO 13849-1 will ultimately make for a much safer manufacturing environment because it accounts for the regulatory gaps that were starting to show in the older standards.

In addition to better hazard identification and analysis and allowing for the use of advanced control systems, EN ISO 13849-1 and EN 62061 also introduces us to the “Performance Level” and “Safety Integrity Level” classifications.

Most safety personnel are familiar with the term “Control Reliable,” which was easily translated to a Category 3 or 4 (per EN 954-1) that provided regular or constant monitoring of the safety system. We now have Performance Levels of (a) through (e) and Safety Integrity Levels of (1) through (3). Unfortunately, these do not always correspond directly to the older classification system.

Overall, EN ISO 13849-1 is an improved, more comprehensive safety specification. By adhering to its tenets, the manufacturing environment will be safer and properly guarded machines will be better documented for the long run. Fortunately for facility managers, best practices and market-ready solutions already exist to help them implement any changes.

WHAT’S NEXT?
At some point in the near future, a revised and ratified version of the RIA 15.06 Industrial Robot Standard will be put into place. This new standard will reference ISO 10218-1, 2:2011, which addresses robot systems and integration.

The new RIA 15.06 will no longer be exclusive to the U.S. and is written to be compliant with international standards already in place in Europe. This new standard will require better hazard identification and provide for proper training. It will also mandate risk assessments requiring validation of the safety solutions, along with designs that incorporate protective measures for the robot cell and the operator.

Some of the biggest changes we will see in the new RIA 15.06 industrial robot standard have to do with safety-rated motion and allowing for advanced programmable safety devices to be utilized. What this means is software will now be allowed “safety-rated” control of various aspects of the robots function.

For example, programmable safety controls can now limit the area in which the robot operates and the speed of robot motion. This is a departure from older standards in that programmable safety controls were not allowed. Thanks to technological advances in safety controls, these long over-due applications can now safely be implemented.

In the past, engineers designing these systems guarded for the maximum space, speed and load of the robot. With these changes, the physical footprint of new robot cells should shrink. Coupled with the proper point-of-interaction safety devices, significant floor space savings could be realized.

Additionally, the risk assessment methodology will require the use of EN ISO 13849-1 specifications, which will require validation of the safety systems and all components. Although fence positions, heights and locations might be altered and other details have yet to be finalized, it is safe to assume all will make for a much safer manufacturing environment.

Subscribe to learn the latest in manufacturing.

Calendar & Events
Southeast Design – 2-Part Show
September 11 - 12, 2013
Greenville, SC
Mid-Atlantic Design – 2-Part Show
September 25 - 26, 2013
Phoenixville, PA
CMTS of Canada
September 30 - October 3, 2013
Mississauga, Canada
Wisconsin Manufacturing and Technology Show
October 8 - 10, 2013
Wisconsin State Fair Park Exposition Center Halls B&C
DISCOVER 2013
October 8 - 16, 2013
Florence, KY
WESTEC 2013
October 15 - 17, 2013
Los Angeles, CA
SOUTH-TEC
October 29 - 31, 2013
Greenville, SC
New England Design-2-Part Show
October 30 - 31, 2013
Marlborough, MA
DMG / Mori Seiki Manufacturing Days
November 12 - 15, 2013
Mori Seiki Manufacturing – Davis, CA
FABTECH
November 18 - 21, 2013
McCormick Place – Chicago, IL
Midwest Design-2-Part Show
November 20 - 21, 2013
Northern Kentucky Convention Center – Covington, KY
PCD Tool Manufacturing
November 20, 2013
United Grinding North America – Fredricksburg, VA