Home / Co-Operative Robots Take Center Stage

Co-Operative Robots Take Center Stage

Dense clusters of robots, requiring no complex computation, can swarm like bees or a flock of birds to carry out tasks collectively and pave the way for robot ‘swarms’ to be used in the agricultural industry, for example, where precision farming methods could benefit from the use of large numbers of very simple and cheap robots. 

Posted: April 17, 2014

A way of making hundreds – or even thousands – of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield. The team, working in the Sheffield Centre for Robotics (SCentRo), in the University’s Faculty of Engineering, has programmed extremely simple robots that are able to form a dense cluster without the need for complex computation, in a similar way to how a swarm of bees or a flock of birds is able to carry out tasks collectively.

The work, published today in the International Journal of Robotics Research, paves the way for robot ‘swarms’ to be used in, for example, the agricultural industry where precision farming methods could benefit from the use of large numbers of very simple and cheap robots.

A group of 40 robots has been programmed to perform the clustering task and the researchers have shown, using computer simulations, that this could be expanded to include thousands of robots. Each robot uses just one sensor that tells them whether or not they can ‘see’ another robot in front of them. Based on whether or not they can see another robot, they will either rotate on the spot, or move around in a circle until they can see one.

In this way they are able to gradually form and maintain a cluster formation. The system’s ingenuity lies in its simplicity. The robots have no memory, do not need to perform any calculations and require only very little information about the environment. Until now robotic swarms have required complex programming, which means it would be extremely difficult to miniaturize the individual robots. With the programming developed by the Sheffield team, however, it could be possible to develop extremely small – even nanoscale – machines.

The Sheffield system also shows that even if the information perceived by the robots gets partially corrupted, the majority of them will still be able to work together to complete the task.

Roderich Gross, of SCentRo, explains: “What we have shown is that robots do not need to compute to solve problems like that of gathering into a single cluster, and the same could be true for swarming behaviors that we find in nature, such as in bacteria, fish, or mammals. This means we are able to ‘scale up’ these swarms, to use thousands of robots that could then be programmed to perform tasks. In a real world scenario, this could involve monitoring the levels of pollution in the environment; we could also see them being used to perform tasks in areas where it would be hazardous for humans to go. Because they are so simple, we could also imagine these robots being used at the micron-scale, for example in healthcare technologies, where they could travel through the human vascular network to offer diagnosis or treatment in a non-invasive way.”

The researchers are now focusing on programming the robots to accomplish simple tasks by interacting with other objects, for example by moving them around or by sorting them into groups.

The Faculty of Engineering at the University of Sheffield – the 2011 Times Higher Education’s University of the Year – is one of the biggest and best engineering faculties in the UK. Its seven departments include over 4,000 of the brightest students and 900 staff, and have research-related income worth more than £50 million per annum from government, industry and charity sources. Its research income recently overtook the University of Cambridge, confirming its status as one of the best institutions in the world to study engineering. The 2008 Research Assessment Exercise (RAE) confirmed that two-thirds of the research carried out was either Internationally Excellent or Internationally Leading.

The Faculty’s engineering expertise is extensive, with a long tradition of working with industry, including Rolls-Royce, Network Rail and Siemens. Its industrial successes are exemplified by the award-winning Advanced Manufacturing Research Centre (AMRC) and the new £25 million Nuclear Advanced Manufacturing Research Centre (NAMRC).

www.shef.ac.uk/faculty/engineering

 

Subscribe to learn the latest in manufacturing.

Calendar & Events
Southeast Design – 2-Part Show
September 11 - 12, 2013
Greenville, SC
Mid-Atlantic Design – 2-Part Show
September 25 - 26, 2013
Phoenixville, PA
CMTS of Canada
September 30 - October 3, 2013
Mississauga, Canada
Wisconsin Manufacturing and Technology Show
October 8 - 10, 2013
Wisconsin State Fair Park Exposition Center Halls B&C
DISCOVER 2013
October 8 - 16, 2013
Florence, KY
WESTEC 2013
October 15 - 17, 2013
Los Angeles, CA
SOUTH-TEC
October 29 - 31, 2013
Greenville, SC
New England Design-2-Part Show
October 30 - 31, 2013
Marlborough, MA
DMG / Mori Seiki Manufacturing Days
November 12 - 15, 2013
Mori Seiki Manufacturing – Davis, CA
FABTECH
November 18 - 21, 2013
McCormick Place – Chicago, IL
Midwest Design-2-Part Show
November 20 - 21, 2013
Northern Kentucky Convention Center – Covington, KY
PCD Tool Manufacturing
November 20, 2013
United Grinding North America – Fredricksburg, VA